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Abstract—The heating of a laminar liquid jet by the condensation of its saturated vapour is analysed.
Solutions for heat transfer in circular and flat ducts held at constant wall temperature, are adapted to
the problems of vapour condensation on a cylindrical jet and on a sheet of uniform thickness re-
spectively. The solutions are extended to the case of constant external temperature with constant
external resistance on the jet surface. A solution is also derived for the condensation heating of a fan
spray sheet which has been the subject of an experimental investigation, reported separately [2].

Simplified equations are derived giving the local Nusselt number and the average temperature for
jets with zero surface resistance, having a limiting low or a limiting high Graetz number. The simplified
equations are shown to have a common form for all jet types considered.

Numerical values are presented for the local Nusselt number and the average temperature as a
function of the Graetz number for jets with zero surface resistance. -
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NOMENCLATURE
constants in the eigenvalue
problems;

specific heat;

longitudinal co-ordinate in fan
spray sheet derivation;
transverse co-ordinate
spray sheet derivation;
boundary value of Cs;
hydraulic diameter;
Graetz number;
heat-transfer coefficient at the
jet surface;

local overall heat-transfer co-
efficient;

thermal conductivity;

length co-ordinate in the longi-
tudinal direction;

length co-ordinate in the trans-
verse direction;

constants in limiting low Gz
solutions;

eigenvalue and summation in-
dices;

in fan
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N1, Nz,

Nll;t,
Ps
9z,

X5 ¥y

Z,

Greek symbols

a,

constants in limiting high Gz
solutions;

local Nusselt number;
transformation of z;

local heat flux;

volumetric flow rate;

radius or radial co-ordinate;

jet radius;

sheet thickness;

local jet temperature;

average jet temperature;

jet inlet temperature;

external temperature (the satu-
rated vapour temperature);

jet surface temperature;

jet velocity in the flow direction;
Cartesian co-ordinates;
transformed Gz number.

thermal diffusivity;
non-dimensional local jet tem-
perature;

non-dimensional average jet
temperature;

eigenvalue;

angle subtended by fan spray
sheet.
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INTRODUCTION

HeaT transfer in the direct contact condensation
of steam on a water jet is of interest in the design
of equipment such as contact condensers,
contact feed water heaters and deaerators. This
type of equipment, long used in industry, is
becoming increasingly important in the develop-
ment of economic water desalination units.
A npotable application of direct contact heat
transfer between steam and water is found in the
“vapor reheat flash process” for water de-
salination [1] which is currently being developed
under the sponsorship of the U.S. Office of
Saline Water.

Direct contact heating is a very efficient heat-
transfer operation. Very high coefficients of
heat transfer may be attained by condensing
steam on a thin water sheet. Coefficients ex-
ceeding 200 000 kcal/h m2 degC have been
measured in the present investigation.

This paper forms the theoretical part of a
mainly experimental study of steam conden-
sation on laminar water sheets generated by fan
spray nozzles. It describes theoretical solutions
for the heating of laminar jets of various types
by the condensation of saturated vapour. The
analyses are simplified and made amenable to
exact mathematical solution according to the
following concept. The heating of a jet by the
condensation of saturated vapour is considered
to be analogous to the heating of a fluid in plug
flow through a duct held at constant external
temperature. The case of heat transfer with an
external resistance at the wall is also examined.

Confirmation of the solution derived for the
fan spray sheet with zero surface resistance, is
included in the experimental part of this investi-
gation which is reported separately [2].

The theory of jet heating by vapour conden-
sation has been partly treated by Kutateladze {3]
who examined freely falling cylindrical and
plane jets respectively, assuming no surface
resistance. An error was introduced in each of
the analytical solutions, in the conversion of the
basic differential equation into non-dimensional
form. The variation in jet thickness, arising from
gravitational acceleration, was ignored in the
transformation of the thickness term. The
solutions become valid if jet velocity is assumed
constant and gravity terms are omitted.
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Kutateladze formulated his solutions in a form
applying also for turbulent heat transport, by
adding the eddy diffusivity coefficient to the
thermal diffusivity term. However, the eddy
diffusivity coefficient for jets is unknown. It
differs from that for pipe flow, since in jets the
velocity profile is essentially uniform, while in
pipes, the profile is non-uniform. For this
reason, the experimental verification presented
by Kutateladze for a turbulent cylindrical water
jet heated by steam is inconclusive; it is based on
an eddy diffusivity coeflicient evaluated from
pipe flow correlations.

GENERAL ASSUMPTIONS

The well known and extensively studied
problem of filmwise condensation of a vapour,
such as steam, on a cold solid surface [4] differs
basically from the problem of vapour conden-
sation on a liquid jet. In the former case a
marked velocity gradient exists in the condensate
film due to the shear stress at the solid boundary.
Also, the heat of condensation is discarded
through the cold solid surface so that the amount
condensed is only limited by the extent of the
surface.

In the latter case, the velocity profile is
approximately uniform since the velocity gradient
arising from the shear stress at a liquid-gas
interface is usually negligibly small compared
to that at a solid-liquid interface. Furthermore,
all the heat of condensation is absorbed by the
jet, raising its temperature. There is, therefore, a
definite limit to the amount of vapour that may
be condensed on a jet.

For a water jet initially at room temperature,
the maximum amount of steam which can be
condensed is less than 20 per cent of the initial
flow. Mathematical analysis is considerably
simplified by neglecting the flow variation along
the jet, due to the condensing liquid. The
problem becomes analogous to the heating of a
fluid moving in plug flow through a duct held at
a constant external temperature. Solutions are
available for the case of the round duct and for
the flat duct with no surface resistance [5].
These solutions will be briefly reviewed and com-
pared to the solution derived for the fan spray
sheet.

The case of external resistance at the surface,
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also treated below, is of considerable interest.
Under practical conditions, a surface resistance
may arise, for instance, from interfacial con-
densation resistance [6, 7} or from build-up of
an inert gas layer on the condensation interface
[81.

Simplifying assumptions common to the
derivations presented below are as follows:

(a) The condensing vapour is saturated and
hence, the jet moves in a medium of con-
stant temperature T. The surface tempera-
ture of the jet, T, is evaluated assuming
that the heat-transfer coefficient s, corre-
sponding to the surface resistance, is
constant along the jet. Obviously, with
zero surface resistance, Ty = T.

(b) Jet velocity is assumed constant, neglecting
the interfacial drag and the reaction on the
jet due to vapour initially at rest con-
densing on a moving liquid.

(c) The usually small variations of physical
properties (¢, p, K) with temperature are
neglected.

(d) Heat conduction in the flow direction is
small compared to conduction in the trans-
verse direction, and asusual, can beignored.

The assumptions made, other than those
calling for effects of the condensate sheath to be
ignored, may be considered to be reasonably
representative of practical conditions. The
discrepancy arising from neglecting condensate
effects appears to be small in the light of the
experimental verification described elsewhere [2].

CYLINDRICAL JET
Using the symbols of Fig. 1, the well-known
heat conduction equation for the cylindrical

jet is as follows [5]:
1oT
) I

oT ‘2T
u 5} =a (572—
Product solution of equation (1) gives the
following expression for the temperature distri-
bution:
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Fig. 1. Cylindrical jet nomenclature.

where Jp is the zero order Bessel function of the
first kind. Using the initial condition, 7 = Ty
at x = 0, the constants 4, are given by:

_ 2J1 (An) 3)
© Aaf{lJo (W)B + 1 (WP}
where J; is the first order Bessel function of the

first kind. Integration of equation (2) yields the
following expression for the average temperature:

An
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The local heat-transfer coefficient is defined by:
qz =27TRdxhx.(Ts —_ T)-:
pum R2 ¢ dx (2T/ox). )

Using equations (4) and (5), the general ex-
pression for the local Nusselt number is:

hyD
"5 An AnJ1 (M) exp (— 22 @ x/u R?)
n=1
n=cw M (6)
> [AnJ1 (An)/ Anlexp (— A% a x/u R%)
n=1

Zero surface resistance
With no surface resistance, the boundary
condition is T=7T; at r = R. Equation (2)
shows that the eigenvalues are roots of the Jo
function:
Jo () = 0. 0
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Hence, equations (4) and (6) simplify into:

n= o

i 4
0 = — exp (—422/Gz 8
Z Fop(aRG)  @®)

" exp (—4A2/Gz)
Ny =~ 9

2 (1/A5)exp (—23/Gz)
n=1

where the distance x is expressed non-dimen-
sionally through a Graetz number based on
the hydraulic diameter:

Gz = u D%ax. (10)

Approximations for limiting Graetz numbers

For small Graetz numbers, each of the series
in equations (8) and (9) converges rapidly.
Taking the first term of the series, the following
well-known [S] approximations are obtained:

j = 06915 exp (—23:136/Gz) (11
Nug = 5-784. (12)

For large Graetz numbers, the following
approximate relationships hold (see Appendix A):

_ 8
=1 = s (13)

_ VGm Gz
Nte = T 31/ Gy ™ \/( - ) (14

Finite surface resistance
Here, the boundary condition at the surface

is:

h(Ts — T) = K(QZ) atr = R. (15)

or
Using equation (2), it is found that the eigen-
values for this case are given by:

A1) D
Jo(h) — 2K (16)

The general expressions for A4,, § and Nuy
remain unaltered. The Nusselt number calcu-
lated with equation (16) is, by the definition, an
overall heat-transfer coefficient combining
the internal conduction resistance of the liquid
and the external surface resistance.
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For the limiting case of small Graetz numbers,
a simple relationship for Nu, can be obtained,
by taking only the first term of the rapidly
converging series. Equation (6) reduces to:

Nuy == X;. (17)
Hence, from equation (16):
VO RN _BD

Jo(v/Nuz)

PLANE SHEET OF UNIFORM THICKNESS

In an ideal sheet of uniform thickness s
having an infinite width (Fig. 2), the heat
conduction equation takes the form [5]:

o o 2T
ox udr (19)
g A
| ,,\
r T T~ "
3 Y ™
0 ‘ — 7 x

|
|

Fi1G. 2. Nomenclature for plane sheet of uniform
thickness.

Product solution of this equation gives the
temperature distribution as:

6 — Li—7T _
ST T,
n= o ,—-‘4A2 .
Z A eXp (—u—szfi‘) cos (22 yfs).  (20)
n=1

From the initial condition, T = Ty at x =0,
the constants A, are given by:

- 28in A,
T Ap 4+ sin A, cos Ay

An Q1)
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The average temperature of a cross section,
obtained by integration of equation (20), is:

Ts “'T ! 2y
i~ =), 09(3) -
o dusinhe_ (—4Rax
An exp us?

). (22)

n- 1

Taking into account the heat-transfer area on
both sides of the plane, the local heat-transfer
coefficient % is defined by:

gz = 2dx . hy (Ts -~ T) —?—x (puscT)dx (23)

2

where ¢ is the local heat flux per unit breadth.
Using equation (22), the general expression of
the local Nusselt number, based on the hydraulic
diameter of the infinitely wide sheet (2s), is
found to be:

he . 2s
Nflx = xK =
& dwsindn | [—4Xax
24/\" o exp( o )
ret . (29

Ap sin A, ox (~~4/\';" ax
An p us?

o 1

Zero surface resistance

In this case, the boundary condition at the
surface is T =T, at y = s5/2. From equation
(20), the eigenvalues are:

M =5 (20— 1), (25)

Substituting for the values of the constants,
and expressing the distance x by a Graetz
number based on the hydraulic diameter of
sheet, the following expressions are obtained:

n =0

0= 1 xp[—dn2 (20 — 162

(26)
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"5 exp [—4n® 2n — 1)2/G7]
Nuz = 7:72 n ==c: =1
[—dn2 (21 — 1%/G7]
7
where,
2
Gz = @s)P u (28)

aXx

Approximations for limiting Graetz numbers

For small Graetz numbers, the following
simplified equations, based on the first term of
the rapidly converging series, may be used:

6 = % exp (—472/Gz) 29)

Nuyg == =2, (30)

For very large Graetz numbers, expansion into
MacLaurin’s series, as shown in Appendix A,
gives the following approximate relationships:

_8

\/(‘n' GZ)
. oz

M= v e~ N () 6

Finite surface resistance
The boundary condition at the surface, viz.:

f=1-— 31)

er
h(Ts — Ty) = Kg; aty =s/2 (33)
is used to determine the eigenvalues. From
equation (20):
hs

/\ﬁ tan An :2—K.

(34
In this case, the Nusselt number calculated from
equations (21), (24) and (34) is an overall
heat-transfer coefficient combining the con-
duction resistance and the surface resistance

A simple relationship can be derived for the
limiting case of small Graetz numbers. Taking
the first term of the rapidly converging series
in equation (24), it is found that:

Nug = 422, (35)
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Hence, from equation (34)

Vi) tan [V Qa2 = 36)

FAN SPRAY SHEET

The plane sheet of uniform thickness treated
above, represents an ideal flow model which
cannot be physically realized. If a liquid flows
as a flat sheet, its thickness continually decreases
in the flow direction.

The fan spray sheet [9] may be described as a
sector of an attenuating disc subtending an
angle of ¢ radians. The streamlines flow radially
from the disc origin. Neglecting the small
transverse velocity component involved in the
spreading of the sheet, the velocity can be
shown to be uniform throughout the sheet [9].
The continuity equation

Q =dxsu 37)

shows that

x § == constant (38)

i.e. sheet thickness s varies inversely with the
distance x from the origin. Since conditions
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near the origin are indeterminate, it is assumed
that the fan spray sheet of initial temperature
To is exposed to saturated vapour starting from
a very short distance xo from the origin. It is
further assumed that the sheet is thin compared
to its radial extent so that s < x at all points of
the heated sheet. These assumptions are reason-
ably representative of practical conditions
existing in a thin laminar sheet generated by a
fan spray nozzle.

Analytical solution is obtained by using
transformed co-ordinates, C; in the longitudinal
direction and C: in the transverse direction
(Fig. 3). Consistent with equation (38), liquid
is assumed to flow in the longitudinal direction

between surfaces of constant C» defined by:
Cl=2xy. 139)

At the boundary,

Ci=2x:=x45 {40)

[3° HIR

&)

The co-ordinate Ci, normal to Cs, is determined
by:

C? = x? — 32, {41)

Y
C,consT [
t } 7.1.
,
d, % &
B |
0 s
T =const
%

Fi1G. 3. Fan spray sheet nomenclature.
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A heat balance over an element of length
d/; in the longitudinal direction and width dls
in the transverse direction (Fig. 3) gives:

0 0 oT
51—1(¢xdlzu pCT)d11 :%(KqSXdlla_lz) dls. (42)

It is shown in Appendix B that:

ol _oh C1
(“ac;)% =37 *3)
ol _ Ok Ca
(ai)ﬁf=565_“7' “4)

Using these relationships, equation (42) becomes:

0 xT_a@ C, oT 45
%aﬁ%a@xaﬁ'(>

Since y < (s/2) <€ x, it follows that C2 €
and hence:
Cirx~T. (46)
Equation (45) thus simplifies into:
oT 4a [ 2
7 (acz) T “7)

Since this expression is of the same form as
equation (19) for a plane sheet of uniform
thickness, its solution is easily derived by
inserting in equation (20) appropriate substitu-
tions. It is found that:

g _T=T _
===
~ 4N a(x3— x3 e
ZAn exp )L —gu(ﬁi)}.cos (/\,, CT;,)
n=1

(48)
The initial condition is: T = Ty at C; = xp and
with zero surface resistance the boundary
condition is: T =T, at Cz = Cs. Using these
boundary conditions, the eigenvalues are exactly
those given by equation (25).
The average temperature of a transverse
section deﬁned by the surface C% = constant, is:

S [ (@) ()

j'lez

(49)

O’—:-T '
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Integrating equation (48) and substituting for
the constants, the average temperature is:

) 8 n=ao 1
— E L —472 (20— 1)2
6 = - @ =17 exp [—4n2 (2n — 1)2/3 Gz]

n=1

(30)

where the Graetz number, based on the hydraulic
diameter of the sheuvi 2s, is defined by:
4Cu

oo ey O
Since the assumptions made restrict the solution
to values of x > xo, equation (51) simplifies
into:
2s)2u

Gz = .
ax

(52

The local heat-transfer coefficient, taking into
account the heating on both sides of the sheet,
is given by:

g = (26 CLdh) . hy . (Ts — T)

7 -
== (pué C:cT)dl. (53)
aly =
Hence using equations (43) and (46),
_ a0
2he 0 = —pucs —. (54)

ox

Differentiating equation (50) and rearranging,
it is found that
hy .28 .

Nu, = X

"3 exp [—4n? (2n — 1)2/3 Gz

2
e

Z (—25-1—1—)23’@’ [—472 (2n — 1)?/3 GZ]
B (55)

Comparison of equations (50) and (55) with
the corresponding equations (26) and (27) for
the sheet of uniform thickness shows that the
expressions are identical except for the factor 3
preceding Gz in the case of the fan spray sheet.
Hence the following approximate relationships
may be immediately written by analogy to the
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case of a sheet of uniform thickness. For small
Graetz numbers,

6= % exp (—472%/3 Gz) (56)
Nuy == =2, 57
For large Graetz numbers,
8
f=1-— V0 G (58)
V(3 Gz/m)

Niig ~ /(3 Gz/m). (59)

T 1 —[8/4/(37 Gz)]

The case of constant surface resistance is
difficult to solve. Equation (34) does not hold
since the eigenvalues become variables depending
on 5. The eigenvalues can be made constant by
assuming that 4 varies inversely with s, but a
solution based on this assumption seems trivial.

CONCLUSIONS

Some general conclusions can be noted
by comparing the solutions of the different jets
for zero surface resistance. The Graetz number
has been defined on a common basis, using the
hydraulic diameter of the jet Dy. In each case,
the average temperature and the Nusselt number
solely depend on the Graetz number. For
small Graetz numbers, the local Nusselt number
tends to a constant value independent of the
Graetz number.

Tables 1 and 2 give accurate values of § and
Nug as a function of Gz, calculated by computer
with an error of less than 106, The functions
are plotted in Figs. 4 and 5. Values of § and
Nuy can be calculated with less than I per cent
error over most of the Graetz number range,
using the simple relationships derived for
limiting values of (z. The magnitude of each
limiting Gz giving the maximum error of 1 per
cent in § or Nuy has been determined (Table 3
and 4) by comparing computer results with
values obtained from the approximate relation-
ships.

For small Graetz numbers, the approximate
relationships have the following common form:

—log 6 = M) + (M2/Gz) (60)
Nu, = Ms. (61)
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Table 1. Values of 8 and Nux asa Junction of Gz for the
eylindrical jet with zero surface resistance

Gz ] Niuy
400 000 0-99288 358-373
200 000 0-98994 253-865
100 000 0-98578 179-969

66 666 0-98259 147-234
50 000 0-97991 127-720
40 000 0-97754 114403
20 000 0-96030 81-363
10 000 0-95528 58-007

6 666 094532 47-664

5000 0-93698 41-501

4000 0-92965 37-297

2000 0-90110 26-876

1000 0-86133 19-531

666 0-83130 16292
500 0-80607 14-372
400 0-78454 13-068
200 0-70144 9-884
100 0-58802 7-744
666 0-51016 6-886
50 0-44709 6-437
40 0-39419 6179
266 0-29187 5-898
20 0-21782 5-817
16 0-16299 5-793
13-33 0-12203 5786
11-43 0-09138 5-784
10 0-06844 5-783
8-88 0-05125 5-783

8 0-03838 5783

4 0-00213 5-783

2 0-000066 5783

Values of the constants M1, M3 and Mg for the

different jets are summarized in Table 3.
Similarly, for large Graetz numbers, the

expressions have the following common form:

f =1 — (Ni/v/Gz) (62)

Ng\/GZ

Nu:c = r_ (N—l/"\/GZ)‘

(63)
Values of the constants N1 and Nz are given in
Table 4.

It is of interest to note that the solution for
the uniformly thick sheet shows similarity to
that for the cylindrical jet on the one hand and
to that for the fan spray sheet on the other
hand. At large Graetz numbers (the entry
region) the expressions for § and Nu, for the
uniformly thick sheet and for the cylindrical
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Table 2. Values of 8 and Nux as a Junction of Gz for the uniformly thick sheet (Gz,) and for the fan spray sheet

(Gzy) with zero surface resistance

Gz, Gz, 6 Nuz Gz, Gz, 6 Nuz
3944 000 1315000 0-99867 1123-55 985-9 328-6 0-85710 20-698
1972 000 657 300 099773 795-22 657-3 2191 0-82482 17-562

985 900 328 600 0-99640 563-06 4929 164-3 0-79757 15-729
657 300 219 100 0-99538 460-21 ! 394-4 1315 0-77357 14-505
492 900 164 300 0-99452 398-90 2629 87-64 0-72246 12-631
394 400 131 500 0-99375 357-06 1972 65-73 0-67939 11-678
197 200 65 730 0-99077 253-23 157-8 52-584 0-64143 11-062
98 590 32 860 0-98657 179-83 131-5 43-822 0-60713 10-664
65 730 21910 0-98334 147-31 112-7 37-560 0-57561 10-401
49 290 16 430 0-98061 12793 98-595 32-865 0-54632 10-226
39 440 13150 0-97821 11471 87-639 29-213 0-51890 10-108
19 720 6573 0-96882 81-898 78-876 26-292 0-49311 10-030
9 859 3286 0-95547 58717 39-433 13-146 0-29849 9-873
6573 2191 0-94525 48-451 19-719 6573 0-10982 9-870
4929 1 643 0-93663 42-354 13-146 4-382 0-04039 9-870
3944 1315 0-92904 38192 9-860 3-287 0-01486 9-870
1972 657-3 0-89926 27900 - 7-888 2:629 0-00547 9-870

|
10 T TTT
s 3
AN ]
|)T-to . _ J
i FAN SPRAY SHEET-._ 5
1D AN
CYLINDRICAL JET
o1 [ UNIFORMLY THICK SHEET 4
s B
[ -t- :
oot p
P E 1
»- S i 1 | A1 L 11l I L4l i 1L Aadl L 11111:
W B T+ 610 R . ¢ 5407 2 AR < 6 a0t 2 < 6 490f
.upch’
6z Tr

FiG. 4. Average temperature as a function of the Graetz number for jets of various configurations (zero

jet are identical (Table 4). At small Graetz
numbers (the region of fully developed profile)
Nu, has the same constant value for the uniformly
thick sheet and for the fan spray sheet (Table 3).

When considering the local heat-transfer

surface resistance).

coefficient Az, an important difference between
the uniformly thick sheet and the fan spray
sheet should be noted. Referring to equations
(32) and (30), it is seen that for the sheet
of uniform thickness, the local heat-transfer
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FI1G. 5. Local Nusselt number as a function of the Graetz number for jets of various configurations (zero
surface resistance).

Table 3. Values of constants in approximate equations for limiting low Graetz numbers and upper values of Gz for which
the equations apply with 1 per cent accuracy

Upper value of Upper value of

Shape of jet M, M, M, Gz for § Gz for Nux
Cylindrical 0-160 9-08 5784 70 25
Uniformly thick sheet 0-092 17-20 9-870 120 60
Fan spray sheet 0-092 575 9-870 40 20

Table 4. Values of constants in approximate equations for limiting high Graetz numbers and lower values of Gz for which
the equations apply with 1 per cent accuracy

Lower value of Lower value of

Shape of jet N, N, Gz for 0 Gz for Nu,
Cylindrical 4-5135 0-56419 500 10000
Uniformly thick sheet 4:5135 0-56419 80 80
Fan spray sheet 2:6132 0-97999 26 26

o

coefficient A, continuously diminishes as x is
increased reaching a constant value in the
region of practical saturation. In the fan spray
sheet, the decrease in sheet thickness with
increasing x reduces the effective thickness of
the thermally resistant layer and tends to
augment h, as x is increased. Equations (38),
(52), (57) and (59) show that for low values of x,

corresponding to large Gz, i, decreases according
to:
1

ha:OCT/’;C

while in the region of large x, corresponding
to small Gz, h; increases according to:

(64

hxxx

(65)
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Equations (64) and (65) can explain a striking
difference between Weinberg’s experimental
results [10] for conical spray sheets and those
obtained for fan spray sheets in the experi-
mental part of this work [2]. Although in both
forms of sheet the thickness variation with x
is of a similar type, h; was found to diminish
with increasing x in the former investigation
while an opposite trend was observed in the
present investigation.

The variation of h; with x will be seen to be
in the right direction in each case if it is realized
that Weinberg studied thick sheets of high Gz,
while this work was confined to thin sheets
of low Gz.
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APPENDIX A
Approximate Relationships for Large Graetz
Numbers

At very large Graetz numbers, simplified
equations may be derived, based on a two term
expansion of the McLaurin’s series. Let z be a
variably inversely related to Gz (as defined
below). For large Gz or small z, the following
approximation holds:

f(@) = f(0) + zf"(0).

z—0

(AD)

Cylindrical jet
The following substitution will be used for
convenience:

z =2/4/Gz. (A2)
Equation (8) for 6 becomes,
n=auw 4
f=f(z) = E )‘—3 exp (— A2 z2). (A3)

The initial condition, # =0 at x =z =0,
shows that f(0) = 1. Differentiating equation
(A3):
FE =D —Sep(-1 A, (Ad
n=1

The following approximation is justified for
small values of z:

[2o]

@~ | —8zexp(—2A3z%)dn. (AS)
n a2 (1/4)
For the series [11] giving the roots of
Jo(A) =0 )

the following approximation may be made when
many terms are used:

1
AnNﬂ(n‘Z).

7@ == exp (= ep = 2 =10 (A7

(A6)

Hence
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where
- ap (A8)
p=m{H — z) z
and
dp ==z dn. (A9)
Substituting in equation (Al)
8

This approximation can be also applied to
the denominator of Nu, in equation (9). For the
numerator, the following approximation holds
for small values of z:

f2) = Z exp (—A% 2%

n=1

1 =©
A~ — e—p? -—
A zﬂjexp( p?) dp 2\/@,2). (A11)
0
Hence,
B V(Gz/n
Ntz = T8/ 7m G2y’ (4
Flat sheet of uniform thickness
The expression for ¥ is:
b =f(s) = z e [ n— 122
and here, (A12)
- Al3
Z == \/GZ ( )

The initial conditions give as before f(0) =1,
a result that can be checked from equation (26),
using the well-known formula:

=00

i 8
DEmoe A9
n=1
Differentiating equation (A12),
, 16
f@@=— = z zexp [— (2n — 1) 22), (Al5)
n=1
As before, for small values of z,
ro~ g lewm.0 =24 =10
0 (A16)
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where
=Q2n— 1Dz
and
dp =2z dn. (A17)
Hence, substituting in equation (A12),
_ 8
J@=0=1— e (3D

This expression can also be applied to evaluate
the denominator of the Nu, expression (equation
27). For small z, the numerator is given by:

/@ =" exp[— @n — 1¢74

n=1

1 L
A — 2 Y’
T Jexp (— p¥dp 4 (A18)
[\
Hence substituting in equation (27):
Nity — V(Gz[n) 32)

1 —[8/v/(= G}

Fan spray sheet

Substituting 3 Gz for Gz in equations (31)
and (32), the corresponding expressions for the
fan spray sheet are immediately obtained.

APPENDIX B

Transformation of Co-ordinates in Fan
Spray Sheet Derivation
The equations defining the C; and Cz system
of co-ordinates (Fig. 3) are:

C:=2yx 39
Ci=x2— )2 (40)

The derivative of interest [(0//0C1)]c,, is calcu-
lated from the following expression:

ol \2 ox \2 oy \?
(9“(:‘;) cy (3C1) Ca + (9—51)02' By

Partial differentiation of equations (39) and (40)
with respect to Ci, at constant Co, gives:

ox ay

0= (56, 2 (5.,
oy

& (351)02

(B2)

20, = 2x ( (B3)

acl)cz
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Solving simultaneously, x2 4 2 = r2 it is found that,
ox xC1 al oh C
=} == B4 = =] =— 4
(3C1) ca X4z (B4) (9C1)02 (9C1)Cz r “
oy —y Cy A similar derivation shows that,
3C).. S E o (B3)
0Ci)cy, X2+ ¥ ol {0k Co 44
Substituting in equation (Bl), noting that (@)01 = (8_6'2)01 T (44)

Résumé—On analyse théoriquement ’échauffement d’un jet laminaire de liquide par la condensation
de sa vapeur saturée. Des solutions pour le transport de chaleur dans des tuyaux circulaires et des
tuyaux plats maintenus 4 une température pariétale constante, sont adaptées aux problémes de
la condensation de la vapeur respectivement sur un jet cylindrique et sur une lame d’épaisseur
uniforme. Les solutions sont étendues au cas d’une température extérieure constante avec une
résistance extérieure constante sur la surface du jet. On a aussi obtenu une solution pour I’échauffe-
ment par condensation d’un jet plan en éventail, qui a été le sujet d’une recherche expérimentale,
rapportée séparément [2].

On a obtenu des équations simplifiées donnant le nombre de Nusselt local et la température moyenne
pour des jets avec une résistance de surface nulle, dans les cas limites d’un nombre de Graetz faible ou
élevé. On montre que les équations simplifiées ont une forme commune pour tous les types considérés
de jets.

Des valeurs numériques sont présentées pour ie nombre de Nusselt local et la température moyenne

en fonction du nombre de Graetz pour des jets avec une résistance de surface nulle.

Zusammenfassung—Die Beheizung eines laminaren Fliissigkeitsstrahles durch kondensierenden Dampf
wird analysiert. Lésungen fiir den Wirmeiibergang in kreisformigen und flachen Kanilen mit kon-
stanter Wandtemperatur werden fiir die Probleme der Dampfkondensation an einem zylindrischen
Strahl bzw. einer Platte gleichmissiger Dicke herangezogen. Die Lésungen werden auf den Fall
konstanter Temperatur bei konstantem Wirmeiibergangswiderstand an der Strahloberfliche aus-
gedehnt. Fiir die Beheizung eines ebenen Sprithfichers mit kondensierendem Dampf, die experimentell
untersucht wurde, und woriiber getrennt berichtet wird [2], ist eine Losung abgeleitet.

Vereinfachte Gleichungen geben die 6rtliche Nusselt-Zahl und die mittlere Strahltemperatur bei
einem Ubergangswiderstand von Null, fiir eine obere und untere Grenze der Graetz-Zahl an. Die
vereinfachten Gleichungen besitzen fiir alle betrachteten Strahitypen eine gemeinsame Form.

Numerische Werte sind fiir die ortliche Nusselt-Zahl und die Mitteltemperatur als Funktion der

Graetz-Zahl fiir Strahlen mit dem Ubergangswinkel Null angegeben.

ABBoTanEa—PaccMaTpUBAETCH HAPPEB JaMMHAPHOM KMIKOH CTPYH IpM KOHKEHCAUNH ee
HACHIEHHOT0 napa. Pemenusa nindA TemrooGMeHa B KPYIIHX M IJIOCKUX KaHAJIAX IpPU IO-
CTOAHHO TeMIepaType CTeHKH IPMMEHAKTCHA COOTBETCTBEHHO K 3ajadaM O KOHEGHCAUMU
mapa Ha IMIMHAPWYeCKOll CTpye I Ha CTpye B BUAe TOHKON NIACTHHKKE PaBHOMEPHOH’ TOoMIN-
HH. JlaercA 00o01eHNe 3TUX pelIeHuit JJIA CiIy4aeB MOCTOAHHON BHeIHell TeMIIepaTypH NpH
TIOCTOAHHOM BHEINHeM CONpOTHBIIEHMY Ha moBepxXHocTH crpyu. Haltmeno pemenue pas
HarpeBa BeepHOIl CTypu NpM KOHAEHCALUH, YeMy IOCBAINEHO OTIelIbHOe MCCIefoBaHNe
(ccrka [2]).

ITosyyenn ynpomieHHHE ypaBHEHudA AJA NOKAJIbHOro umciaa Hyccembra u cpefHeit Temie-
PATYPH A CTPYH ¢ HYJIEBEIM IOBEPXHOCTHHM CONPOTUBIICHNEM IIPH NpPefelbHO HUSKUX MK
TpefeJabHO BRHICOKMX unciaax I'perna. ITokasaHo, 4To 3TH ypaBHEHHA MMeT obmiyo ¢gopMy
JJIA BCEX PacCMATPUNBAEMEIX THUIOB CTpYit.

IIpuBogATCA YKCIeHHEe 3HAYEHNA JOKaIbLHOrO uncna Hyccexbra u cpepHeit Temneparypsl
CTeHKHM B 3aBUCMOCTH OT 4ucina I'perna Aua cTpylf ¢ HyJNeBHM IIOBEPXHOCTHHIM CONpPOTHB-

JeHNeM.



